## RAZVOJ



### Waste to Energy



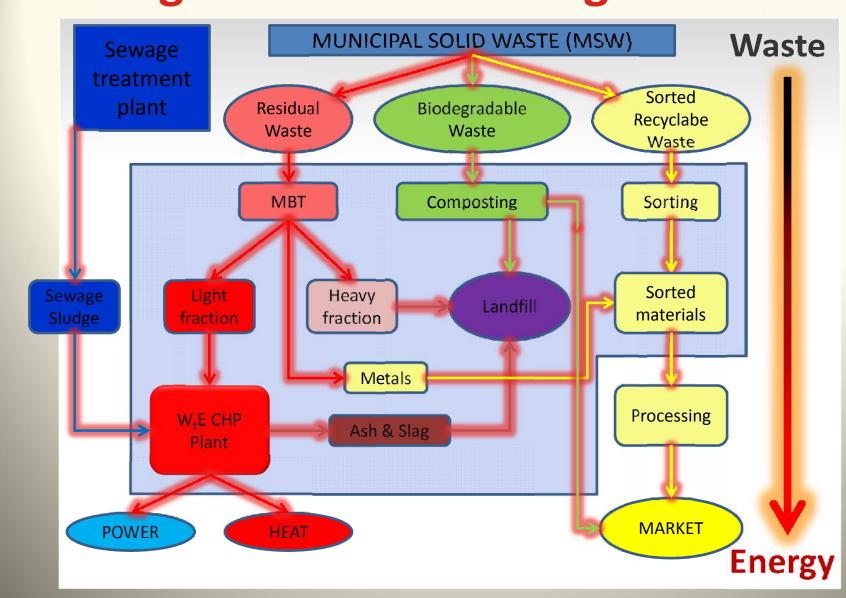
Celje W<sub>t</sub>E CHP Plant

#### RAZVOJ



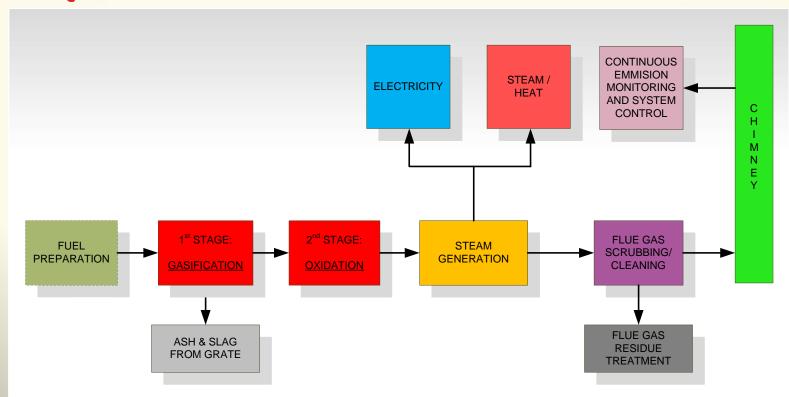
### **Waste Managment Strategy**

Waste management strategy in accordance with European directive **91/156/EEC**:


- 1. Reduction at source
- 2. Reuse
- 3. Recycle
- 4. Energy recovery
- 5. Disposal



#### RAZVOJ




### **Regional Waste Managment**



## R A Z V O J W<sub>t</sub>E Technology





- Weighing, inspection and storage of RDF and SS
- Fuel mixing, transport and dosing into the gasification chamber
- > WID-compliant two-stage gasification and thermal treatment process
- Heat recovery / utilization and power/heat production
- Flue gas treatment, emission monitoring and system control

## R A Z V O J Celje Waste to Energy CHP Plant

## KIV

#### **Plant priorities:**

- 1. <u>Disposal</u> of waste
- 2. Heat <u>recovery</u> for district heating
- 3. Power <u>production</u>



## R A Z V O J Technical Data



Throughput: 35.000 t/a

Design point fuel CV: 13,6 MJ/kg

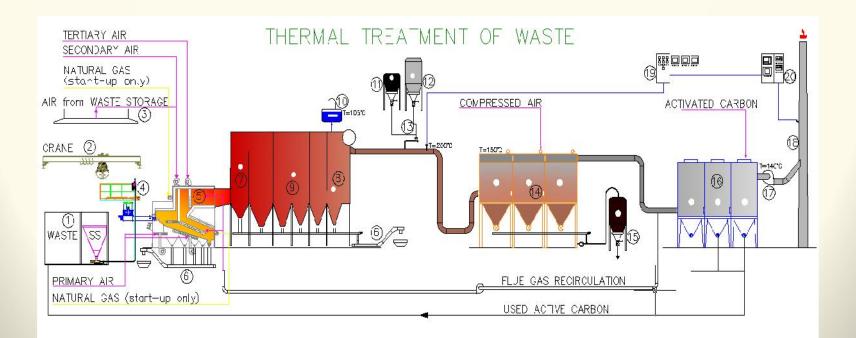
Boiler thermal output: 15 MW<sub>th</sub>

Steam parameters: 20 t/h, 30 bar<sub>a</sub>, 360°C

Steam turbine output: 2,1 MW<sub>e</sub>

Operation modes:  $13 \text{ MW}_{th} (110^{\circ}\text{C}) + 2 \text{ MW}_{e}$ 

 $15 \text{ MW}_{th} (130^{\circ}\text{C}) + 0 \text{ MWe}$ 


Operation: 24 h/day; 8.000 hours/year

#### **Compliant with:**

- EU Directives (WID, IPPC) & Local legislation
- EU Best Available Techniques Reference (BREF) document
  - Best Available Technology (BAT)

## R A Z V O J Process Scheme





- 1 Fuel storage
- 2 Crane
- 3 Air from storage
- 4 Interm. storage + dosing units
- 5 Furnace
- 6 De-ashing system
- 7 Superheater

- 8 Economiser
- 9 Evaporator
- 10 Supply water
- 11 Activated carbon
- 12 Sodium bicarbonate
- 13 Grinding and mixing unit
- 14 Ceramic filter

- 15 Fly ash silo
- 16 Activated carbon filter
- 17 Flue gas fan
- 18 Stack
- 19 Control system
- 20 Continuous emission monitoring

## R A Z V O J Fuel Storage



#### **Fuel delivery:**

RDF: 40 times/week

SS: 5 times/week

#### **Fuel storage cap.:**

RDF: 1400 m<sup>3</sup>

SS: 85 m<sup>3</sup>

Sufficient for 4 days.

#### Interm. storage:

Volume: 25 m<sup>3</sup>



Intermediate (mixing) storage

## RAZVOJ Boiler



**Fuel input capacity:** 18 MW

**Boiler capacity:** 15 MW<sub>th</sub> (water-tube boiler)



Boiler room

## R A Z V O J Flue gas scrubbing



#### **SNCR**

Ammonia solution: reduction of NO<sub>x</sub>

#### Dry flue gas scrubbing

Sodium bicarb. powder for reduction of acid gases:  $SO_2$ , HCl and HF

Activated carbon powder: elimination of heavy metals & dioxins/furans

#### **Filters**

Ceramic filter Activated carbon filter



Activated carbon filter, CEMS and stack

### R A Z V O J Ceramic filter



#### **Bag filter:**

Particle reduction: ~99,9%

#### Fly ash silo:

Volume: 85 m<sup>3</sup>

Storage cap. for 5-7 days.



Ceramic filter and fly ash silo

## R A Z V O J Activated Carbon Filter



#### **Activated carbon filter\*:**

Reduction of TOC, dioxins, furans and heavy metals including Hg.

No. of pods: 21



\* KIV patented technology

Activated carbon filter

## R A Z V O J CEMS and Stack



#### Flue Gas Fan:

Volume flow: cca. 33.000 Nm<sup>3</sup>/h

#### **Continuous Emission Monitoring (CEM):**

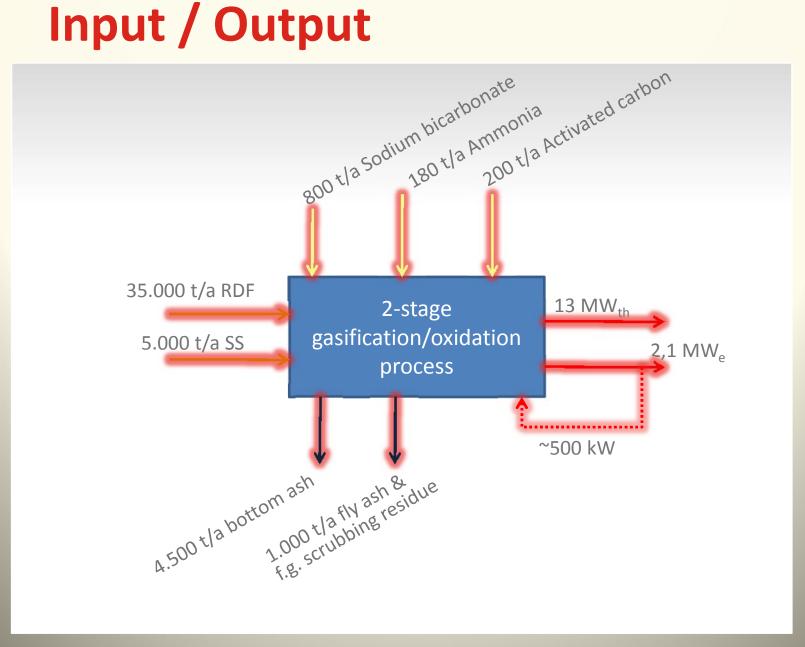
CO, NO, NO<sub>2</sub>, O<sub>2</sub>, SO<sub>2</sub>, HCl, HF, TOC, Hg, NH<sub>3</sub>, moisture, dust, temperature, pressure, mass flow

#### **Stack:**

Height: 25m



**CEMS** and stack


## R A Z V O J Emission Limits



| Parameter                          | Half-hour mean values (mg/Nm³) |    |   |     | Daily mean values (mg/Nm³) |     |    |              |     |
|------------------------------------|--------------------------------|----|---|-----|----------------------------|-----|----|--------------|-----|
|                                    | WID limits Celje limits        |    |   |     | WID limits                 |     |    | Celje limits |     |
| Dust                               | 3                              | 0  |   | 20  |                            | 10  |    |              | 5   |
| Total organic carbon (TOC)         | 2                              | .0 |   | 20  |                            | 10  |    |              | 10  |
| Hydrochloric acid (HCl)            | 6                              | 0  |   | 50  |                            | 10  |    |              | 8   |
| Hydrofluoric acid (HF)             | 4                              | 4  |   | 2   |                            | 1   |    |              | 1   |
| Sulphur dioxide (SO2)              | 20                             | 00 |   | 150 |                            | 50  |    |              | 40  |
| nitrogen oxides (NO <sub>2</sub> ) | 4(                             | 00 |   | 350 |                            | 200 |    |              | 180 |
| Carbon monoxide (CO)               | 10                             | 00 | Щ | 100 | Щ                          | 50  |    | Щ            | 30  |
| Heavy metals:                      |                                |    |   |     |                            |     |    |              |     |
| Hg                                 | 0,05                           |    |   |     | 0,05                       |     |    |              |     |
| Cd and Tl (total)                  |                                |    |   |     |                            |     | 0, | ,05          |     |
| Sb,As,Pb,Cr,Co,                    |                                |    |   |     |                            |     | С  | ),5          |     |
| Cu,Mn,Ni,V,Sn (total)              |                                |    |   |     |                            |     |    |              |     |
| As, Cd, Co, Cr or As, Cd,          |                                |    |   |     |                            |     | 0, | ,05          |     |
| Co, Cr (total)                     |                                |    |   |     |                            |     |    |              |     |

### RAZVOJ Input / Output

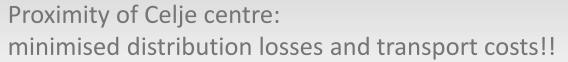




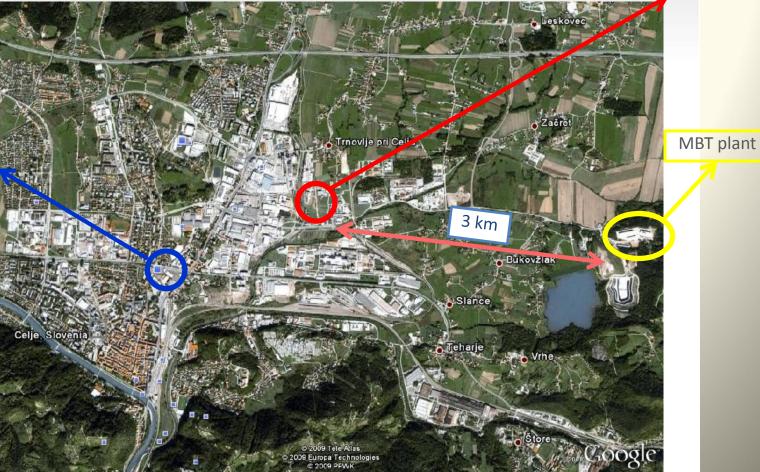
## R A Z V O J Bird's-eye view



#### Celje W<sub>t</sub>E CHP Plant:


Municipal Solid Waste (MSW) from 220.000 citizens for Combined Heat and Power (CHP) production for the Municipality of Celje.




Location of the plant

## R A Z V O J Satellite view





Celje W<sub>t</sub>E CHP plant



Celje centre

### R A Z V O J Benefits

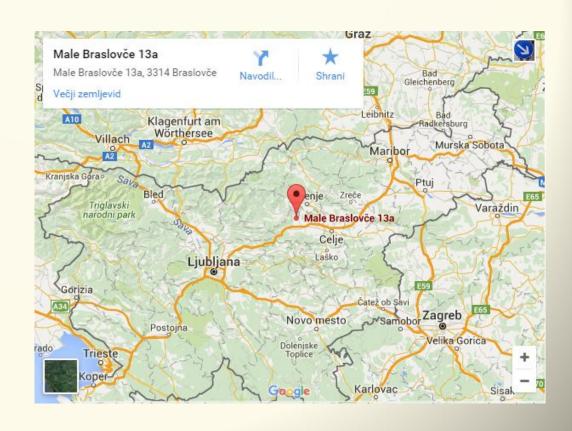


#### Positive environmental and economical benefits:

- > Reduction of landfilled waste: ~65%
- > 100% disposal of local sewage sludge (40% ash residual)
- Waste from local population given back as electricity/heat
- Minimised waste transport
- ➤ Net fossil fuel savings (heating): ~4.000.000 Sm³/year (natural gas)
- Reduction of green house gases
- Optimal utilization of heat and electricity (proximity of Celje)

A local W<sub>t</sub>E CHP solution for every town / small city.

# R A Z V O J Contact




RAZVOJ d.o.o. Braslovče Male Braslovče 13a SI-3314 Braslovče SLOVENIA

Tel.: +386 3 7000 380

WWW: www.razvojdoo.si

Email: info@razvojdoo.si

